EECS3342 System Specification and Refinement
(Winter 2022)

Q\&A - Week 2 Lecture

Thursday, January 27

- Lecture W3 released
- Lab Solution released
- Example Questions for \square released
- Plan of Returning In-Person (starting Feb. 14)
+ Unchanged
* Pre-recorded lectures
* Zoom Weekly Q\&A and Office hours in the first instance
* Zoom Weekly Scheduled labs in the first instance
* Online Programming \& Written tests in the first instance
+ Changed
* In-Person Exam
+ To be determined:
* Some (programming and/or written) tests may be in-person, in which case you'll be notified at least one week in advance.

Rewriting Relational Operations

Is this okay to write instead of just 't'? (I put in red the part I have added as new): $r<+t=t \in r) \cup(\operatorname{dom}(t) \ll \mid r) \mathrm{NO}_{3}$ It's not type cowect.

Blackboard - EECS3342 - W22
$r=\{(\mathrm{a}, 1),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{a}, 4),(\mathrm{b}, 5),(\mathrm{c}, 6),(\mathrm{d}, 1),(\mathrm{e}, 2),(\mathrm{f}, 3)\}$

$a+b=b+a$

If I want to prove that a function is not bijective, can I simply prove that it's not total, injective or surjective? ' (ES. Suppose it is not total, do I still need to check if it is injective or surjective?

$$
\begin{aligned}
& \chi * * T \\
& !x . x: I_{N} T \Rightarrow x>0
\end{aligned}
$$

$$
\begin{aligned}
& x \circledast y
\end{aligned}
$$

How can we enumerate: $\{1,2,3\} \in->\{a, b\}$

$$
\begin{aligned}
& f(n)=2 n^{2}+3 n+4 \\
& O\left(n^{2}\right) \\
& O\left(n^{3}\right) \\
& O\left(n^{4}\right) \\
& O\left(2^{n}\right)
\end{aligned}
$$

Is every function partial?
\rightarrow YES (functional popery).

Given two sets S and T, say we write:

- S V T for their union
- $S \wedge T$ for their intersection
- $S \backslash T$ for their difference

What is the cardinality of the power set of $(\{a, b, c, d\} \backslash\{a, e\}) \bigvee\{a, f\}$? Enter an integer value (with no spaces).

Answer:

Lab Solution: Context

CONTEXT CO
 SETS

ACCOUNT carrier set: abstract without the need to enumerate content of the set
PERSON carrier set: details of each member in PERSON are abstracted away (ENV9) - Solution to Exercise 4 of Lab

CONSTANTS

C Credit limit (ENV3)

$$
-c \leq \underline{b}(a) \leq L
$$

L preset upper bound (ENV3) - Solution to Exercise 3 of Lab1

AXIOMS

axm1: $\quad c \in \mathbb{N}_{1}$
not theorem means an axiom; theorem means a proof is needed. In this case, the typing constraint should be an axiom.
thm1: \langle theorem 〉 $c>0$
axm2: $L \in \mathbb{N}_{1}$
typing constraint of variable L - Solution to Exercise 3 of Lab1
END

Lab1 Solution: Machine (Variables \& Invariants).

MACHINE Bank0

// Initial model of the bank system

SEES C0

VARIABLES

b balance (ENV2)
d cash drawer (REQ7)
owner account owner (ENV9)- Solution to Exercise 4 of Lab1

INVARIANTS

inv1: $b \in A C C O U N T \rightarrow \mathbb{Z}$
inv2: $d \in \mathbb{Z}$
inv3: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c$
(ENV3)
inv4: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq(L)$
(ENV3) - Solution to Exercise 3 of Lab1
inv5: owner \in ACCOUNT \rightarrow PERSON
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\operatorname{dom}(b)=$ dom(owner)
Consistent domains of the balance and owner functions (ENV9) - Solution to Exercise 4 of Lab1 (Note. If we declared this invariant as a theorem, then it must be provable/derivable from other invariants that are declared as axioms, which is not the case. Instead, we also declare this invariant as an axiom (i.e., not as a theorem) so that proof obligations (POs) will be generated regarding it being established (by INITIALIZATION) and preserved (by other events).)

Lab Solution: Machine (INITIALIZATION).

MACHINE Bank
// Initial model of the bank system
SEES CO
VARIABLES

- b balance (ENV2)
- d cash drawer (REQ7)
. owner account owner (ENV9) - Solution to Exercise 4 of Lab1 INVARIANTS

(ENV3)
inv4: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$
(ENV3) - Solution to Exercise 3 of Lab1 inv5: owner $\in A C C O U N T \rightarrow P E R S O N$
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\quad \operatorname{dom}(b)=\operatorname{dom}($ owner $)$
end
1

```
\[
\text { inv2: } \quad d \in \mathbb{Z}
\]
inv3: \(\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c\)
inv1: (b)\inACCOUNT->\mathbb{Z}
```

inv: $\quad \forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$
owner $\in A C C O U N T \rightarrow P E R S O N$
(own)

Initialisation
begin

(REQ4) act: owner $:=\varnothing$

Empty bank (ENV9) - Solution to Exercise 4 of Lab1

Lab Solution: Machine (withdraw)

MACHINE Bank0

// Initial model of the bank system
SEES CO
VARIABLES
b balance (ENV2)
d cash drawer (REQ7)
owner account owner (ENV9) - Solution t

INVARIANTS

inv: $\quad b \in A C C O U N T \rightarrow \mathbb{Z}$
inv2: $d \in \mathbb{Z}$
inv3: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c$ (ENV3)
inv4: $\quad \forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$

Event withdraw ordinary $\widehat{=}$
(REQ6) - Exercise 2 from Lab1: withdraw/inv3/INV cannot be proved. any
a account to withdraw

where
type_of_a: $\quad a \in A C C O U N T$
typing constraint of event parameter a
type_of_v: $\quad v \in \mathbb{N}_{1}$
typing constraint of event parameter v
wd_for_b(a): $a \in \operatorname{dom}(b)$
inv_3: $b(a)-v \geq-c$

Solution to Exercise 2 of Lab1
then

updates the cash drawer
end
(ENV3) - Solution to Exercise 3 of Lab1 inv5: owner $\in A C C O U N T \rightarrow P E R S O N$
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\operatorname{dom}(b)=\operatorname{dom}($ owner $)$

Lab1 Solution: Machine (deposit)

MACHINE Bank0

// Initial model of the bank system
SEES C0
VARIABLES
b balance (ENV2)
d cash drawer (REQ7)
owner account owner (ENV9) - Solution to Exercise 4 of Lab1 INVARIANTS
inv1: $\quad b \in A C C O U N T \rightarrow \mathbb{Z}$
inv2: $d \in \mathbb{Z}$
inv3: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c$ (ENV3)
inv4: $\quad \forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$
(ENV3) - Solution to Exercise 3 of Lab1
inv5: owner $\in A C C O U N T \rightarrow P E R S O N$
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\operatorname{dom}(b)=\operatorname{dom}($ owner $)$

Event deposit \langle ordinary $\widehat{\widehat{ }}$
(REQ5) - Solution to Exercise 3 of Lab1 any
a
where

$$
\begin{array}{ll}
\text { grd1: } & a \in \operatorname{dom}(b) \\
\text { grd2: } & v \in \mathbb{N}_{1} \\
\text { grd3:- } & b(a)+v \leq L
\end{array}
$$

then

- act1: $b(a):=b(a)+v$
act2: $d:=d+v$
end

Lab1 Solution: Machine (transfer).

MACHINE Bank0

// Initial model of the bank system
SEES C0
VARIABLES
b balance (ENV2)
d cash drawer (REQ7)
owner account owner (ENV9) - Solution to Exerc INVARIANTS
inv1: $\quad b \in A C C O U N T \rightarrow \mathbb{Z}$
inv2: $d \in \mathbb{Z}$
inv3: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c$
(ENV3)
inv4: $\quad \forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$
(ENV3) - Solution to Exercise 3 of Lab1
inv5: owner $\in A C C O U N T \rightarrow P E R S O N$
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\operatorname{dom}(b)=\operatorname{dom}($ owner $)$

Lab1 Solution: Machine (open/close accounts).

Event open_account <ordinary $\widehat{=}$
(REQ4) - Solution to Exercise 4 of Lab1 any
p
where

MACHINE Bank0

// Initial model of the bank system
SEES C0
VARIABLES
b balance (ENV2)
d cash drawer (REQ7)
owner account owner (ENV9) - Solution to Exercise 4 INVARIANTS
inv1: $\quad b \in A C C O U N T \rightarrow \mathbb{Z}$
inv2: $d \in \mathbb{Z}$
inv3: $\forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \geq-c$
(ENV3)
inv4: $\quad \forall a \cdot a \in \operatorname{dom}(b) \Rightarrow b(a) \leq L$
(ENV3) - Solution to Exercise 3 of Lab1
inv5: owner $\in A C C O U N T \rightarrow P E R S O N$
(ENV9) - Solution to Exercise 4 of Lab1
inv6: $\operatorname{dom}(b)=\operatorname{dom}($ owner $)$

Event close_account \langle ordinary $\widehat{=}$
(REQ10) - Solution to Exercise 4 of Lab1 any
a
where
grd1: $\quad a \in \operatorname{dom}(b)$
grd2: $\quad b(a)=0$
then
act1: $b:=\{a\} \notin b$
act2: owner $:=\{a\} \notin$ owner
end

